Lecture 6
Outline

Calculate n and p

- **Assumptions**: Non-degenerate; total ionization of dopants

- **Known**:
 \[n_i \]
 \[np = n_i^2 \]
 \[p - n + N_p - N_A = 0 \]

 - n and p can be obtained by solving the two equations above

Determination of \(E_F \)

1) Exact position of \(E_i \)
2) Doped semiconductors

\[n = n_i e^{(E_F - E_i)/kT} \]

Recall,
\[p = n_i e^{(E_i - E_F)/kT} \]

Thus,

Reading: Chapter 2.5, 2.6

Quiz # 2: 10 minutes

Homework #3:
2.7 (hint: carrier distribution is given by \(g_c(E)f(E) \). For non-degenerate semiconductor,

\[f(E) = \frac{1}{1 + e^{(E - E_F)/kT}} \approx e^{(E_F - E)/kT} \]

2.8 (hint: use the result of 2.7)
2.11
2.16
2.17
2.20 (hint: use Equation (2.13) and Table 2.1)
Due January 28.