Lecture 23
Optical MEMS (5)

- Agenda:
 - MEMS in Optical Communications

MEMS in Optical Communication Systems

Giles et al., IEEE J. STQE, 1999
MEMS in Optical Communication Systems

- Provisioning Switches
- Protection Switches
- Equalizers
- Cross-connect Switches
- Variable Attenuators
- Filters
- Modulators
- Add/Drop Multiplexers
- VCSELs
Variable Optical Attenuators (VOAs)

- **Tilt Micromirror**

![Tilt Micromirror Image](image1)

- **Variable Optical Attenuators (VOAs)**

- **Tilt Micromirror Array**

![Micromirror Array Image](image2)

For Add/Drop Multiplexer (Lucent)
Variable Optical Attenuators (VOAs)

- Lucent 2D Tilt Micromirror

“Two-Axis” Micromirror

Flag Switch Type

Giles, Aksyuk, Barber, Ruel, Stulz, and Bishop, IEEE JSTQE, 1999
Closed-loop Control

Variable Optical Attenuators (VOAs)

- **Source**: 1550nm ASE
- **Switch**: MEMS
- **Feedback Circuit**:
 - Amplifier: $A = 20$ dB
 - Amplifier: $A = 10$ dB
- **Receiver**: 16mW/μW
- **Optical Power Monitor**

![Graph](image)

Giles et al., IEEE JSTQE, 1999

Wavelength Add/Drop (WAD) Multiplexer

Diagram Description

- **WDM Max**: Wavelength Division Multiplexer
- **Focus Lens**: Used for alignment
- **Cathode**: Part of the device
- **Pass**: Optical mode
- **ADD**: Add mode
- **DROP**: Drop mode

Ford, Aksyuk, Bishop and Walker (Lucent), J. Lightwave Tech., 1999
MEMS Optical Switches

<table>
<thead>
<tr>
<th></th>
<th>Lucent</th>
<th>Cronos (JDS)</th>
<th>Xros (Nortel)</th>
<th>Calient</th>
<th>OMMI</th>
<th>IMMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabrication process</td>
<td>Surface</td>
<td>Surface</td>
<td>Surface</td>
<td>Bulk</td>
<td>Surface</td>
<td>Bulk</td>
</tr>
<tr>
<td>Structural material</td>
<td>Poly-Si</td>
<td>Poly-Si</td>
<td>Poly-Si</td>
<td>Single-crystal Si</td>
<td>Poly-Si</td>
<td>Single-crystal Si</td>
</tr>
<tr>
<td>Actuation mechanism</td>
<td>Electro-static</td>
<td>Thermal</td>
<td>Electro-magnetic</td>
<td>Electro-static</td>
<td>Electro-static</td>
<td>Electro-magnetic</td>
</tr>
<tr>
<td>Tilt angle</td>
<td>10</td>
<td>-</td>
<td>-</td>
<td>20</td>
<td>-</td>
<td>50</td>
</tr>
<tr>
<td>Operation mode</td>
<td>Analog</td>
<td>Digital</td>
<td>Analog</td>
<td>Digital</td>
<td>Digital</td>
<td>Digital</td>
</tr>
<tr>
<td>Orientation</td>
<td>Horizontal</td>
<td>Vertical</td>
<td>Horizontal</td>
<td>Horizontal</td>
<td>Horizontal</td>
<td>Horizontal</td>
</tr>
</tbody>
</table>

Trade-offs:

- **Vertical mirrors**: Easy to place other optical components including fibers; but need more complicated process
- **Horizontal mirrors**: Easy to fabricate; but need 3D construction
MEMS Optical Switches

- Lucent 2-axis Scanning Micromirror Array

MEMS Optical Switches

- Lucent 3-D Lamda Router

MEMS 2D Mirror Array
Lucent MEMS OXC

MEMS DEVICE:
- 2-axes, angular range of > ±3°
- continuous, controlled tilt
- directly scalable to 256 mirrors (1024 in the long term)
- simple technology for rapid development/prototyping
- manufacturable

Mirror Array Chip

Prototype
Calient Networks 3D MEMS OXC

- 256 x 256
- 1.4 dB insertion loss

Zheng et al., IEEE JSTQE, 2003

NTT 3D MEMS OXC (100 input and 100 output ports)

Yamamoto et al., IEEE Photonics Technology Letters, 2003
NTT 3D MEMS OXC

Summary of the optical characteristics:
- Insertion loss: 4.0 [dB]
- Return loss: > 30 [dB]
- PDL: < 0.5 [dB]
- Crosstalk: < -60 [dB]

Yamamoto et al., *IEEE Photonics Technology Letters, 2003*

MARS – Mechanical Anti-Reflection Switch

- Unbiased: mλ/4 air gap (m odd - reflection)
- Biased: (m-1)λ/4 air gap (m even - anti-reflection)

Walker, Goossen and Arney (Lucent)
- Electromagnetic Switch

C.H. Ji et al. (LG Electronics Inst. of Tech.), IEEE JSTQE, 2004
MEMS 2x2 Optical Switch

- Electrostatic Sidewall Micromirror

http://www.sercalo.com/

Tunable VCSEL

Chang-Hasnain, UC Berkeley