Lecture 15
RF MEMS (3)

- Agenda:
 - S-Parameters
 - Mechanical Modeling of RF MEMS Devices
 - Dynamic Analysis
 - Electromagnetic Modeling

Most figures and data in this lecture, unless cited otherwise, were taken from RF MEMS Theory, Design and Technology by G. Rebeiz.

S-Parameters

- Y and Z parameter models use input and output voltage and current signals.
- Scattering Parameters, or S-parameters have inputs and outputs expressed in power.
- a is assigned to incident values while b indicates reflected values.
- S-parameters are transmission and reflection coefficients.
- Transmission coefficients are referred to as gains and attenuations.
- Reflection coefficients are related to voltage standing wave ratios (VSWRs) and impedances.
S-Parameters

\[S_{11} = \frac{b_1}{a_1} \mid a_2 = 0 \]

= Input reflection coefficient with the output port terminated by a matched load \((Z_L = Z_0)\) sets \(a_2 = 0\).

\[S_{22} = \frac{b_2}{a_2} \mid a_1 = 0 \]

= Output reflection coefficient with the input terminated by a matched load \((Z_S = Z_0)\) sets \(V_S = 0\).

\[S_{21} = \frac{b_2}{a_1} \mid a_2 = 0 \]

= Forward transmission (insertion) gain with the output port terminated in a matched load.

\[S_{12} = \frac{b_1}{a_2} \mid a_1 = 0 \]

= Reverse transmission (insertion) gain with the input port terminated in a matched load.

Reflection coefficient \(\Gamma = S_{11} \rightarrow\) Smith Chart
Dynamic Analysis of MEMS Switches

- Damping
- Switching time
- Release time

Damping

Gas Fundamentals

Mean-free path

$$\lambda = \frac{1}{\sqrt{2\pi N\sigma^2}}$$

N is the number density of gas. \(\sigma\): gas molecule’s diameter.

\(\lambda_0=0.07-0.09\,\mu m\) for most gases at STP (standard temperature and pressure, i.e., \(P_0=101\,\text{kPa}\) at room temperature).

For a gas at a pressure \(P_a\), the mean free path can be obtained by

$$\lambda_a = \frac{P_a}{P_0} \lambda_0$$

For example, if \(P_a = 1\,\text{morr} = 7.5\,\text{Pa}\), then \(\lambda_a = 1\,\text{mm}\), which is much greater than the gaps of MEMS devices.
Damping

- **Gas Fundamentals**

 Knudsen Number \[K_n = \frac{\lambda}{g} \] where \(g \): air gap.

 Knudsen number is a measure of the viscosity of the gas. The smaller the Knudsen number, the more viscous the gas or fluid is.

 Coefficient of viscosity

 \[\mu = 1.2566 \times 10^{-6} \sqrt{T} \left(1 + \frac{110.33}{T}\right)^{-1} \text{ kg/m} \cdot \text{s} \]

 \(T \) is in Kelvin and this equation is for ideal and quasi-ideal gases. At STP, \(\mu = 1.845 \times 10^{-5} \text{ kg/(m} \cdot \text{s)}. \)

 Viscosity changes with Knudsen number. Veijola et al derived the dependence:

 \[\mu_e = \frac{\mu}{1 + 9.638K_n^{1.159}} \]

- **Gas Fundamentals**

 Squeeze Number

 \[\sigma(\omega) = \frac{12 \mu_e l^2}{P_g g^2} \omega \]

 where \(\omega \) is the applied mechanical frequency.

 \(l \): the characteristic length. For a circular membrane, \(l \) is the radius. For a rectangle, \(l \) is the shortest dimension.

 Squeeze-film damping \(\rightarrow b \)

 Gas compression \(\rightarrow \) spring force \(\rightarrow k_s \)

 At low frequencies \(k_s = 0 \).

 \[b = \frac{3}{2\pi} \frac{\mu A^2}{g^3} \]

 At high frequencies (i.e., high squeeze number), \(k_s \rightarrow P_g A / g \)

 High squeeze number will increase the effective stiffness and thus the resonance frequency.
Damping

- **Quality Factor at Atmospheric Pressure**

 Cantilever Beam

 \[Q_{\text{cant}} = \frac{\sqrt{E\mu l^2}}{\mu (wl)^2} g_0^3 \]

 where \(w \) and \(l \) are the width and length of the cantilever.

 Fixed-fixed beam

 \[Q_f = \frac{\sqrt{E\mu l^2}}{\mu (wl/2)^2} g_0^3 \]

 Given \(l=300\mu m, w=60\mu m, t=1\mu m \) and \(g_0=3\mu m \) \(\Rightarrow Q=1.0 \)

 At very low pressures, \(\mu \to 0 \). The damping coefficient is limited by anchor loss, internal friction loss and thermoelastic dissipation (TED).

- **Damping Variation Versus Gap Height**

 \[Q = Q \left(1 - \frac{x}{g_0}\right)^{3/2} \left(1 + 9.638K_1^{1.159}\right) \]

 \(Q \) is small-displacement quality factor at \(g=g_0 \). Derived by Sadd and Siffier (Trans. ASME, pp.1366-1370, Nov. 1975)

Nonlinear Dynamic Analysis

- **Switching time**

 Equation of Motion

 \[m\ddot{x} + b\dot{x} + kx + k_x x^3 = F_v + F_c \]

 where

 \[F_v = \frac{1}{2} \left(\frac{e_0 AV^2}{g_0 + t / \kappa - x} \right) \]

 \[V = V_i \left(\frac{C_1 dV}{dt} + V \frac{dC}{dt} \right) \]

 \[F_c = \frac{C_1 A}{(g_0 - x)^3} - \frac{C_2 A}{(g_0 - x)^{10}} \]

 Attractive van der Waals force

 Repulsive nuclear contact force

 \(C_1 \) and \(C_2 \) strongly depends on surface materials and conditions. In this analysis, \(C_1=10^{-80}Nm; C_2=10^{-75}Nm^8 \)

 Chan et al, IEEE MTT-S Digest, 1997
Nonlinear Dynamic Analysis

Parameters of the MEMS Beam for this analysis

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>(l)</td>
<td>300 (\mu \text{m})</td>
</tr>
<tr>
<td>Thickness</td>
<td>(t)</td>
<td>0.8 (\mu \text{m})</td>
</tr>
<tr>
<td>Pull-down electrode length</td>
<td>(W)</td>
<td>100 (\mu \text{m})</td>
</tr>
<tr>
<td>Bridge width</td>
<td>(w)</td>
<td>100 (\mu \text{m})</td>
</tr>
<tr>
<td>Gap height</td>
<td>(g_0)</td>
<td>3 (\mu \text{m})</td>
</tr>
<tr>
<td>Spring constant (Au and Al)</td>
<td>(k)</td>
<td>10 N/m</td>
</tr>
<tr>
<td>Residual stress (Au)</td>
<td>(\sigma)</td>
<td>9.5 MPa</td>
</tr>
<tr>
<td>(k) Components (Au)</td>
<td>(k', k'')</td>
<td>((k' = 2.67) N/m, (k'' = 7.33) N/m)</td>
</tr>
<tr>
<td>Density of Al</td>
<td>(\rho_{\text{Al}})</td>
<td>2,700 kg/m(^3)</td>
</tr>
<tr>
<td>Density of Au</td>
<td>(\rho_{\text{Au}})</td>
<td>19,320 kg/m(^3)</td>
</tr>
<tr>
<td>Effective mass</td>
<td>(m_e)</td>
<td>0.35/((l w t))p</td>
</tr>
<tr>
<td>Mechanical resonance frequency (Al)</td>
<td>(f_{0,\text{Al}})</td>
<td>106 kHz</td>
</tr>
<tr>
<td>Mechanical resonance frequency (Au)</td>
<td>(f_{0,\text{Au}})</td>
<td>39.5 kHz</td>
</tr>
</tbody>
</table>

Switching Time

- **Switching time of fixed-fixed beams**

 Matlab/Simulink can be used to obtain the transient response

 - Resonance frequencies:
 - Al beam: 106 kHz
 - Au beam: 39.5 kHz

 - Applied voltage:
 - \(V_s = 1.4 \) \(V_p \)

 - Constant voltage
 - Displacement-dependent damping factor
 - Higher Q makes switching faster, but little effect above Q=2
Switching Time

- Switching time varying with applied voltage

- Au beam; Resonance frequency: \(f_0 = 39.5 \text{ kHz} \)
- Each cycle: 25 \(\mu \text{s} \); \(Q = 1 \)

- For \(Q > 2 \) (Acceleration-limited), switch time \(t_s \approx 0.58 \frac{(V_p/V_s)}{f_0} \)
- For \(Q < 0.5 \) (Damping-limited), \(t_s \approx 0.36-1.0 \frac{(V_p/V_s)^2}{(Qf_0)} \)

Release Time

- Release response can be obtained by setting \(F_e = 0 \) in the nonlinear dynamic equation.
- The bridge oscillates if \(Q > 1 \)
- For best release response, \(Q \approx 1 \)
- Variable damping has greater effect

- Au beam
- Resonance frequency: \(f_0 = 39.5 \text{ kHz} \)
- Each cycle: 25 \(\mu \text{s} \)
Capacitive Shunt Switches

- Circuit model
- Current distribution
- Series Resistance
- Loss

Top view

Cross-sectional View

- G: 50-100 μm
- W: 50-100 μm
- L: 250-400 μm
- w: 25-180 μm
- g: 1.5-5 μm
Capacitive Shunt Switches

- **Current Distribution**
 - **Up-state Position**
 - **Down-state Position**

- No RF current on the middle portion of the bridge
- RF current is carried only at the edge of the t-line
- RF current is concentrated on the bridge edge over the CPW gap.
- Changing the bridge width does not affect the current distribution.
- For down-state position, only one edge of the bridge carries the current. This edge is a short circuit to the incoming wave.

Circuit Model

\[Z_s = R_s + j\omega L + \frac{1}{j\omega C} \begin{cases}
1 / j\omega C & \text{for } f \ll f_0 \\
R_s & \text{for } f = f_0 \\
\omega L & \text{for } f \gg f_0
\end{cases} \]

\[f_0 = \frac{1}{2\pi \sqrt{LC}} \]

- \(C = C_u \) or \(C_d \) depending on the switch position.
- Typically, \(f_{u,d} \sim 300\text{GHz} \) and \(f_{d,d} \sim 50\text{GHz} \).
- For up-state position, the switch can be modeled as a shunt capacitance to ground.
- The inductance plays important role for the down-state position.
Capacitive Shunt Switches

- **Circuit Model**

Series Resistance

\[R_{s2}: 0.01 \sim 0.1 \Omega \]

\[\alpha: t\text{-line loss, } 0.2 \text{-}2 \text{dB/cm (or } 0.17 \sim 1.7 \text{ Np/m)} \]

- If the bridge thickness is smaller than two skin depths, the switch resistance is constant with frequency.
- For thick MEMS bridges, the switch resistance changes as \((f)^{1/2} \) with frequency.

Inductance

\[L: 1 \sim 100 \text{ pH} \]

Switches with meander suspensions for small spring constants have large inductance.

Simulators: IE3D, Sonnet, HFSS

Capacitive Shunt Switches

- **Loss**

\[\text{Loss} = 1 - |S_{11}|^2 - |S_{21}|^2 \]

\[\text{Loss} = \frac{\text{Power loss in MEMS Bridge}}{\text{Power incident on MEMS switch}} = \frac{I^2 R_s}{\left| V^1 \right|^2 / Z_0} \]

\[\text{Loss}(dB) = 10 \log (1 - \text{Loss}) \]
Capacitive Shunt Switches

- **Loss**

 Up-state Position: $Z_s >> Z_0$

 $$\text{Loss} = \frac{R_L Z_0}{|Z_s|^2} = \omega^2 C_n^2 R_L Z_0$$

 Total Loss: $\text{Loss}_u (dB) = \alpha l (dB) + \omega^2 C_n^2 R_L Z_0 (dB)$ (~0.05 dB)

 Down-state Position: $Z_s << Z_0$

 $$\text{Loss} = \frac{4R_L Z_0}{|Z_0|^2} \approx \frac{4R_L}{Z_0}$$

 Total Loss: $\text{Loss}_d (dB) = \alpha l (dB) + \frac{4R_L}{Z_0} (dB)$ (~0.15 dB)

Summary

- **Introduction to S-Parameters**
- **Mean-free path at STP:** 0.07 µm
- **Knudsen number < 0.1 → Viscous**
- **Switching time**
 - Nonlinear equation of motion
 - Matlab/Simulink can be used to obtain transient response
 - Increasing drive voltages decreases switching time
 - Higher Q → faster switching
- **Release time**
 - High Q leads to oscillation
 - Optimal Q ≈ 1