Goals: To analyze and design MEMS transducers utilizing principles of sensing and actuation, properties of materials available for fabrication, microfabrication technologies, and understanding of circuit and system issues, packaging, calibration, and test.

Instructor: Dr. Huikai Xie, Department of Electrical & Computer Engineering; Office: 221 Benton Hall; Tel: 846-0441; and E-mail: hkx@ufl.edu.

Prerequisites: This course is intended for graduate and upper-level undergraduate students with any engineering or physics background. Prerequisites by topic: 1) Differential and integral calculus; 2) Introductory circuit theory; and 3) Statics.

Topics
1. Introduction and Orientation
 - Overview of MEMS
 - Sensors and actuators technologies
2. Fabrication Technology
 - Review of standard IC fabrication technologies - diode, BJT, CMOS
 - MEMS fabrication technologies - bulk micromachining, surface micromachining, and CMOS micromachining; bonding technologies
3. Mechanical Behavior
 - Mechanics: stress, strain, bending, beam-mass systems
 - Lumped-element modeling of static behavior of elementary beams, membranes and plates
 - Effects of residual stress and stress gradients
 - Dynamics, normal modes, damping
4. Transduction Principles
 - Capacitive, inductive, magnetic, optical, piezoresistive, and piezoelectric methods
5. Pressure Sensors and Accelerometers
 - Case studies based on the MEMS literature.
6. Resonant Sensors and Drive Circuits
 - Principles of resonant sensors and drive electronics; RF MEMS
7. Optical MEMS
 - MEMS mirrors and gratings for optical displays, switching and imaging

Grading: Homework (20%), 2 Tests (50%) , Design Project (30%), no Final Exam

Computer Usage:
- Layout of masks and FEM simulation using Coventorware, circuit simulation using P-SPICE, and dynamics calculation using Matlab, Mathcad, or Mathematica.