Lumped-Element Modeling

- Last lecture
 - Two-port element example: inductor
 - Transducers
 - Classification
 - Linear, Conservative
 - General Two-Port Theory

- Today:
 - Review of Electromagnetics
 - Electrodynamic transduction
Maxwell's Equations

Differential Form

1. $\vec{\nabla} \cdot \vec{D} = \rho$
2. $\vec{\nabla} \cdot \vec{B} = 0$
3. $\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$
4. $\vec{\nabla} \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$

Integral Form

1. $\int_S \vec{D} \cdot \hat{n} dS = q$
2. $\int_S \vec{B} \cdot \hat{n} dS = 0$
3. $-\oint_c \vec{E} \cdot d\vec{l} = \int_S \frac{\partial \vec{B}}{\partial t} \cdot d\vec{S} = \frac{d\Phi}{dt}$
4. $\oint_c \vec{H} \cdot d\vec{l} = I + \int_S \frac{\partial \vec{D}}{\partial t} \cdot d\vec{S}$

Gauss's Law
Gauss's Law
Faraday's Law
Ampere's Law
Review of Electromagnetics

Constitutive Relations

\[\vec{J} = \sigma \vec{E} \quad \text{Ohm's Law} \]
\[\vec{D} = \varepsilon \vec{E} \quad \text{Permitivity} \]
\[\vec{B} = \mu \vec{H} \quad \text{Permeability} \quad \text{where } \mu = \mu_r \mu_0 \text{ and } \mu_0 = 4\pi \times 10^{-7} \frac{H}{m} \]

Continuity Equation

\[\nabla \cdot \vec{J} = -\frac{\partial \rho}{\partial t} \]

Lorentz Force

\[\vec{F} = \vec{F}_{\text{electric}} + \vec{F}_{\text{magnetic}} \]
\[= q \left(\vec{E} + \vec{u} \times \vec{B} \right) \]
Magnetic Transduction

- Magnetic Transduction
 Motor/generator action are produced by variations of the attractive force tending to close the air gap in a ferromagnetic circuit.

- Fundamental Definitions
 - Magnetic field, H (Units: A/m)
 - Scalar magnetic potential, M (Units: A) Also known as Magneto Motive Force (MMF)

 \[F_{MM} = \int_{x_1}^{x_2} \vec{H} \cdot d\vec{l} \]

 - Magnetic flux, ϕ (Units: Weber=AH=V-sec)
 - Magnetic flux density, B (Units: Wb/m^2)

 \[\phi = \int_S \vec{B} \cdot \hat{n} dS \]
Analogy

Magnetic quantities

Electrical quantities

MMF is effort.

\[F = HI \]

\[V = EI \]

\[\phi \text{ is displacement. } \frac{d\phi}{dt} \text{ is flow. MMF and } \frac{d\phi}{dt} \text{ are conjugate power variables (Check!). No exact analog of } q \text{ for magnetics.} \]

Ref. R. W. Erickson, Fundamentals of Power Electronics, p. 456
Faraday's Law (integral form) relates voltage, $v(t)$, induced in a loop of wire to the time derivative of the total flux passing through the winding:

$$v(t) = -\frac{d\phi(t)}{dt}$$

('sign' is given by Lenz's law.)

Ampere's Law (integral form) relates magnetomotive force, $M(t)$, induced in magnetic core to the total current passing through interior of path:

$$F_{MM}(t) = \oint_C \vec{H}(t) \cdot d\vec{l} = H(t)l_m = i(t)$$

if magnetic field is uniform.

Ref. R. W. Erickson, Fundamentals of Power Electronics, p. 457-458
Magnetic Circuits

Consider a magnetic element of length, \(\ell \), and area, \(A_c \). Given a uniform magnetic field, \(H \), over the length, \(\ell \), the induced MMF (scalar magnetic potential) is:

\[
F_{MM} = H\ell = \left(\frac{B}{\mu} \right) \ell \quad \text{[using } B = \mu H \text{]}
\]

\[
F_{MM} = \left(\frac{\phi}{A_c} \right) \ell \quad \text{[using } \phi = BA_c \text{ assuming uniform magnetic flux density]}
\]

\[
F_{MM} = \left(\frac{\ell}{\mu A_c} \right) \phi = R\phi \quad \text{[R is called reluctance (not to be confused with resistance!)]}
\]

Kirchoff-like Laws apply.

(1) Divergence of magnetic flux is zero at a node. \(\vec{V} \cdot \vec{B} = 0 \) indicates total flux entering node must be zero.

(2) KML (Kirchoff's Magnetomotive Force Law)

Sum of MMF: \(\int_C \vec{H}(t) \cdot d\vec{l} = ni(t) \)

where \(n \) = # of turns of wire carrying current \(i \).

Electromagnetic Transduction

Since $\frac{d\phi}{dt}$ is flow, ϕ displacement. From $\phi = \frac{1}{R} F_{MM}$, what is the reluctance???

The magnetic reluctance, R, is analogous to the spring constant.

In the magnetic energy domain, the magnetic element stores potential energy.
In the electrical energy domain, the MMF is related to the electrical current by $F_{MM} = ni$, and the inductor stores kinetic energy in the current flow.

The coupling equations between the electrical domain and magnetic domain are:

$$\dot{\phi} = \frac{v}{n} \quad \& \quad F_{MM} = ni \quad \text{where} \quad \phi = \frac{1}{R} F_{MM}$$

From these, we can calculate the electrical inductance:

$$v(t) = L \frac{di}{dt} \quad \text{where} \quad L = \frac{n^2}{R}.$$
Electromagnetic Transduction

- Circuit Representation:
 - Transformer: impedance analogy to admittance analogy

\[
\begin{bmatrix}
\dot{\phi} \\
F_{MM}
\end{bmatrix} =
\begin{bmatrix}
0 & 1/n \\
n & 0
\end{bmatrix} \begin{bmatrix}
i \\
V
\end{bmatrix}
\]

\[\begin{array}{c}
V \\
i
\end{array}\quad 1:n \quad \begin{array}{c}
- \\
\phi
\end{array}\]

\[\begin{array}{c}
T \ (Y \text{ to } Z) \\
n = \# \text{ wire turns}
\end{array}\]

- Gyrator: impedance analogy to impedance analogy

\[
\begin{bmatrix}
\dot{\phi} \\
F_{MM}
\end{bmatrix} =
\begin{bmatrix}
0 & 1/n \\
n & 0
\end{bmatrix} \begin{bmatrix}
i \\
V
\end{bmatrix}
\]

\[\begin{array}{c}
i \\
\phi
\end{array}\quad \begin{array}{c}
- \\
F_{MM}
\end{array}\quad \begin{array}{c}
G \ (Z \text{ to } Z)
\end{array}\]
Example: Inductor with Air Gap

KML: \(M_{\text{core}} + M_{\text{gap}} = ni \) and continuity of flux:

\[
\begin{align*}
\phi_{\text{core}} &= \phi_{\text{gap}} = \phi \\
R_{\text{core}}\phi_{\text{core}} + R_{\text{gap}}\phi_{\text{gap}} &= ni \\
\phi(R_{\text{core}} + R_{\text{gap}}) &= ni
\end{align*}
\]

Faraday's Law for n turns: \(\nu(t) = n\frac{d\phi}{dt} \)

\[
\nu(t) = \left(\frac{n^2}{R_{\text{core}} + R_{\text{gap}}} \right) \frac{di}{dt}
\]

\[\Rightarrow L = \left(\frac{n^2}{R_{\text{core}} + R_{\text{gap}}} \right) \text{ where}\]

\[
R_{\text{core}} = \frac{1}{\mu A_c} \text{ and } R_{\text{gap}} = \frac{g}{\mu_0 A_c}
\]

Caution: \(\phi \) is not a conjugate power variable!
The stored potential energy in the inductor (magnetic energy domain) is:

\[dW_{PE} = edq = F_{MM} d\phi \]

\[W_{PE} = \frac{\phi^2 R}{2} \]

\[dW_{PE}^* = qde = \phi dF_{MM} \]

\[W_{PE}^* = \frac{F_{MM}^2}{2R} \]

Since \(F_{MM} = R\phi \),

Therefore, \(W_{PE} = W_{PE}^* \)

Also, \(F_{MM} = ni \),

So, \(W_{PE}^* = \frac{1}{2} Li^2 \)
Electrodynamic Transduction

- **Electrodynamic**: motor/generator action are produced by the current in, or the motion of an electric conductor located in a fixed transverse magnetic field (i.e., voice coil, solenoid, etc.).

 ![Diagram](image)

 - Lenz's law: "relates motion of conductor in a magnetic field to the induced open-circuit voltage across terminals 1-2". For a differential element, \(dV = (\vec{u} \times \vec{\beta}) \cdot d\vec{l} \), where \(\vec{\beta} = \) magnetic flux density.

 - Total induced voltage is \(\int dV = V = \beta \ell u \).

 Velocity is "upward".

Electrodynamic Transduction

- **Electrodynamic**: motor/generator action are produced by the current in, or the motion of an electric conductor located in a fixed transverse magnetic field (i.e., voice coil, solenoid, etc.).

Laplace's law: "relates force on a conductor in a magnetic field to the current passing through the conductor". For a differential element, $d\vec{F}_{mag} = id\vec{\ell} \times \vec{\beta}$. The total induced force is $\int d\vec{F}_{mag} = F_{mag} = \beta \ell i$. Force is "upward".

"Left-hand rule"

Electrodynamic Transduction

Characteristic Transducer Equations:

From Lenz's and Laplace's laws we get the characteristic questions:

\[V = \beta \ell u \quad \text{and} \quad F_{\text{mag}} = \beta \ell i \]

or in matrix form,

\[
\begin{bmatrix}
V \\
F_{\text{mag}}
\end{bmatrix} =
\begin{bmatrix}
0 & T_{EM} \\
T_{ME} & 0
\end{bmatrix}
\begin{bmatrix}
i \\
u
\end{bmatrix}, \text{ where } T_{EM} = T_{ME} = \beta \ell
\]

Note: \(Z_{EB} = Z_{MO} = 0 \), so there is direct coupling between \(V \) and \(u \) or \(F_{\text{mag}} \) and \(i \).
Electrodynamic Transduction

- **Circuit Representation:**
 - Transformer: impedance analogy to admittance analogy

 \[
 \begin{bmatrix}
 U \\
 F_{mag}
 \end{bmatrix} = \begin{bmatrix}
 1/\beta l & 0 \\
 0 & \beta l
 \end{bmatrix}
 \begin{bmatrix}
 V \\
 I
 \end{bmatrix}
 \]

 \[
 n = \frac{1}{\beta \ell}
 \]

 T (Z to Y)

 - Gyrator: impedance analogy to impedance analogy

 \[
 \begin{bmatrix}
 F_{mag} \\
 U
 \end{bmatrix} = \begin{bmatrix}
 0 & \beta l \\
 1/\beta l & 0
 \end{bmatrix}
 \begin{bmatrix}
 V \\
 I
 \end{bmatrix}
 \]

 \[
 n = \beta \ell
 \]

 G (Z to Z)
Example: Loud Speaker

Admittance ↔ Impedance