Lumped-Element Modeling

- Last lecture
 - Conjugate power variables
 - Equivalent circuit modeling
 - One-port elements
 - Ideal Flow Source
 - Ideal Effort Source
 - Generalized Resistor

- Today:
 - One-port elements
 - Generalized Capacitor
 - Generalized Inertance
 - Co-energy
 - Kirchhoff’s Laws
 - Example
 - Laplace Transform

- Reading: Senturia, pp. 110-118.
Generalized Capacitor

- **Ideal Capacitor, or Compliance**: “C”
 - Stores potential energy associated with a displacement.

 \[e = \Phi(q) \text{ or } q = \Phi^{-1}(e) \]
 - When a compliance has a non-zero effort (non-zero displacement), it is storing potential energy.

\[
W(q_1) = \int_{q_0}^{q_1} e \, dq = \int_{q_0}^{q_1} \Phi(q) \, dq \equiv \text{stored POTENTIAL ENERGY}\]

\[
W^*(e_1) = \int_{e_0}^{e_1} q \, de = \int_{e_0}^{e_1} \Phi^{-1}(e) \, de \equiv \text{stored POTENTIAL CO-ENERGY}\]
Generalized Capacitor

- **Ideal Compliance:** “C”

\[e = \frac{1}{C} \int f \, dt \text{ or } e(j\omega) = \frac{1}{j\omega C} f(j\omega) \]

\[e(s) = Z_C(s) f(s) \quad Z_C(s) = \frac{1}{sC} \]

Complex Impedance

\[W(q_1) = \int_{0}^{q_1} \Phi(q) \, dq \]

\[W^*(e_1) = \int_{0}^{e_1} \Phi^{-1}(e) \, de \]

If \(\Phi \) is linear,
then \(W(q_1) = W^*(e_1) \)

Ref. Senturia, p. 110.
Example: Capacitance

“electrical energy stored via charge”

\[Q = CV \quad \text{and} \quad C = \frac{\varepsilon A}{g}, \] where \(\varepsilon \equiv \) dielectric permittivity

\[W(Q) = \int e\,dq = \int V\,dQ = \int \frac{Q}{C}\,dQ = \frac{Q^2}{2C} = \frac{(CV)^2}{2C} = \frac{CV^2}{2} \]

\[W^*(V) = \int q\,de = \int Q\,dV = \int CV\,dV = \frac{CV^2}{2} \]

Ref. Senturia, p. 111.
Example: Mechanical Spring

“strain energy stored via displacement”

\[x = \frac{1}{k} F \] and \(C_m = \frac{1}{k} \), for a linearly elastic material.

\[W(x) = \int e \, dq = \int F \, dx = \int kx \, dx = \frac{1}{2} kx^2 \]

\[W^*(F) = \int q \, de = \int x \, dF = \int \frac{F}{k} \, dF = \frac{F^2}{2k} = \frac{(kx)^2}{2k} = \frac{1}{2} kx^2 \]

Ref. Senturia, p. 112.
Generalized Capacitor

- **Summary:**
 - **IDEAL:** no KE storage, dissipation, or source.
 - also must go through origin
 - conservative element
 - impedance analogy: \(e = \frac{1}{C} \int f \, dt \) or \(e(j\omega) = \frac{1}{j\omega C} f(j\omega) \)
 - Stores potential energy associated with a displacement.
 - Non-zero effort, non-zero displacement, PE is stored.
 - For **linear compliant systems** (linear dielectrics, Hooke’s Law, etc.)
 \[W(q) = W^*(e) \]
Generalized Inertance

- **Ideal Inertance**: “\(I \)
 - Stores kinetic energy associated with momentum.
 \[
 f = \Psi(p) \quad \text{or} \quad p = \Psi^{-1}(f)
 \]
 - When a compliance has a non-zero flow (non-zero momentum), it is storing kinetic energy.

\[
W(p_1) = \int_0^{p_1} f\, dp = \int_0^{p_1} \Psi(p)\, dp \equiv \text{stored KINETIC ENERGY}
\]

\[
W^*(f_1) = \int_0^{f_1} p\, df = \int_0^{f_1} \Psi^{-1}(f)\, df \equiv \text{stored KINETIC CO-ENERGY}
\]
Generalized Inertance

- **Ideal Inertance:** “I”

\[
e = I \frac{df}{dt} \quad \text{or} \quad e(j\omega) = j\omega I f(j\omega)
\]

\[
e(s) = Z_L(s)f(s) \quad Z_C(s) = sL
\]

Complex Impedance

Ref. Senturia, p. 112.

\[
W(p_1) = \int_0^{p_1} \Psi(p) \, dp
\]

\[
W^*(f_1) = \int_0^{f_1} \Psi^{-1}(f) \, df
\]

If \(\Psi \) is linear then,

\[
W(p_1) = W^*(f_1)
\]
Example: Translating mass
“kinetic energy stored via momentum”

\[I = M \]

\[F = M \frac{du}{dt} \text{ and } p = Mu; \ "Newton's second law". \]

\[W(p) = \int f \, dp = \int \frac{p}{M} \, dp = \frac{p^2}{2M} = \frac{1}{2} \left(\frac{Mu}{M} \right)^2 = \frac{1}{2} Mu^2 \]

\[W^*(f) = \int p \, df = \int Mu \, du = \frac{1}{2} Mu^2 \]
Generalized Inertance

Summary:

- **IDEAL:** no PE storage, dissipation, or source.
 - also must go through origin
 - conservative element
 - impedance analogy: \(e = I \frac{df}{dt} \) or \(e(j\omega) = j\omega I f(j\omega) \)

- Stores kinetic energy associated with momentum.
 - Non-zero flow, non-zero momentum, KE is stored.

- For linear inertance systems (robots are a good counter example)
 \[W(p) = W^*(f) \]
Generalized Kirchhoff’s Laws

KVL (or “KEL”): The oriented sum of all of the efforts around any closed path is zero.

\[V_0 - V_1 - V_2 + V_3 = 0 \]

KCL (or “KFL”): The sum of all of the flows entering a node is zero.

\[I_1 - I_2 - I_3 = 0 \]
For the IMPEDANCE analogy:

- Elements that share common FLOW and DISPLACEMENT are connected in SERIES.

- Elements that share common EFFORT are connected in PARALLEL.

For the admittance analogy, take the dual of the circuit.
Example

■ **Mass-spring-damper system:**

```
\[ \begin{align*}
\text{k} & \quad \xrightarrow{\text{x}} \quad \text{m} \\
\text{b} & \quad \text{F}
\end{align*} \]
```

“shared common displacement”, therefore connect in series.

```
\[ \begin{align*}
\text{v} & \quad \xrightarrow{\text{F}} \quad \frac{1}{\text{k}} \quad \text{m} \\
\text{b} &
\end{align*} \]
```

“single-path system”, therefore use **KEL**.

MUST use proper sign convention!

Example

Mass-spring-damper system

\[
\sum e_i = 0 = -F + e_k + e_m + e_m \quad \text{or} \\
F = M \frac{dv}{dt} + bv + k \int v \, dt \quad \text{or} \\
F = Ma + bv + kx \quad \text{or} \quad F = m\ddot{x} + b\dot{x} + kx
\]

\[
F(s) = \left(\frac{k}{s} + ms + b\right)v(s)
\]

\[
\frac{v(s)}{F(s)} = \frac{1}{\frac{k}{s} + ms + b} = \frac{s}{ms^2 + bs + k}
\]

- One zero, two poles

\[
s_1, s_2 = -\frac{b}{2m} \pm \sqrt{\left(\frac{b}{2m}\right)^2 - \frac{k}{m}}
\]
Laplace Transform

\[F(s) = \int_{0}^{\infty} f(t)e^{-st} dt \]

**TABLE 13.1
AN ABBREVIATED LIST OF LAPLACE TRANSFORM PAIRS**

<table>
<thead>
<tr>
<th>(f(t) (t > 0^-))</th>
<th>TYPE</th>
<th>(F(s))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\delta(t))</td>
<td>(impulse)</td>
<td>1</td>
</tr>
<tr>
<td>(u(t))</td>
<td>(step)</td>
<td>(\frac{1}{s})</td>
</tr>
<tr>
<td>(t)</td>
<td>(ramp)</td>
<td>(\frac{1}{s^2})</td>
</tr>
<tr>
<td>(e^{-at})</td>
<td>(exponential)</td>
<td>(\frac{1}{s + a})</td>
</tr>
<tr>
<td>(\sin \omega t)</td>
<td>(sine)</td>
<td>(\frac{\omega}{s^2 + \omega^2})</td>
</tr>
<tr>
<td>(\cos \omega t)</td>
<td>(cosine)</td>
<td>(\frac{s}{s^2 + \omega^2})</td>
</tr>
<tr>
<td>(te^{-at})</td>
<td>(damped ramp)</td>
<td>(\frac{1}{(s + a)^2})</td>
</tr>
<tr>
<td>(e^{-at} \sin \omega t)</td>
<td>(damped sine)</td>
<td>(\frac{\omega}{(s + a)^2 + \omega^2})</td>
</tr>
<tr>
<td>(e^{-at} \cos \omega t)</td>
<td>(damped cosine)</td>
<td>(\frac{s + a}{(s + a)^2 + \omega^2})</td>
</tr>
</tbody>
</table>

Laplace Transform

TABLE 13.2

An Abbreviated List of Operational Transforms

<table>
<thead>
<tr>
<th>OPERATION</th>
<th>$f(t)$</th>
<th>$F(s)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplication by a constant</td>
<td>$Kf(t)$</td>
<td>$KF(s)$</td>
</tr>
<tr>
<td>Addition/subtraction</td>
<td>$f_1(t) + f_2(t) - f_3(t) + \cdots$</td>
<td>$F_1(s) + F_2(s) - F_3(s) + \cdots$</td>
</tr>
<tr>
<td>First derivative (time)</td>
<td>$\frac{df(t)}{dt}$</td>
<td>$sF(s) - f(0^-)$</td>
</tr>
<tr>
<td>Second derivative (time)</td>
<td>$\frac{d^2f(t)}{dt^2}$</td>
<td>$s^2F(s) - sf(0^-) - \frac{df(0^-)}{dt}$</td>
</tr>
<tr>
<td>nth derivative (time)</td>
<td>$\frac{d^nf(t)}{dt^n}$</td>
<td>$s^nF(s) - s^{n-1}f(0^-) - s^{n-2}\frac{df(0^-)}{dt} - \cdots - \frac{d^{n-1}f(0^-)}{dt^{n-1}}$</td>
</tr>
<tr>
<td>Time integral</td>
<td>$\int_0^tf(x)dx$</td>
<td>$\frac{F(s)}{s}$</td>
</tr>
<tr>
<td>Translation in time</td>
<td>$f(t-a)u(t-a), a > 0$</td>
<td>$e^{-as}F(s)$</td>
</tr>
<tr>
<td>Translation in frequency</td>
<td>$e^{-at}f(t)$</td>
<td>$F(s+a)$</td>
</tr>
<tr>
<td>Scale changing</td>
<td>$f(at), a > 0$</td>
<td>$\frac{1}{a}F\left(\frac{s}{a}\right)$</td>
</tr>
<tr>
<td>First derivative (s)</td>
<td>$tf(t)$</td>
<td>$\frac{dF(s)}{ds}$</td>
</tr>
<tr>
<td>nth derivative (s)</td>
<td>$t^nf(t)$</td>
<td>$(-1)^n\frac{d^nF(s)}{ds^n}$</td>
</tr>
<tr>
<td>s integral</td>
<td>$\int_0^\infty \frac{f(t)}{t}du$</td>
<td>$\frac{1}{s}F(s)$</td>
</tr>
</tbody>
</table>
Laplace Transform

Initial-value theorem:
\[\lim_{t \to 0^+} f(t) = \lim_{s \to \infty} sF(s) \]

Final-value theorem:
\[\lim_{t \to \infty} f(t) = \lim_{s \to 0} sF(s) \]