Lumped-Element Modeling

- Agenda:
 - Design Issues
 - Lumped-Element Modeling
 - Assumptions
 - Conjugate power variables
 - Equivalent circuit modeling
 - One-port elements

- Reading: Senturia, pp. 103-110.
Classification

- **Microsystem “type”:** (determines design strategy)
 - **Technology Demonstration:** (very small volume)
 - drive development activity: (e.g., µTAS, µTurbine, etc.)
 - device proof of concept
 - push fabrication technology
 - **Research Tools:** (small volume, quantitative accuracy)
 - components or complete systems (e.g., AFM tips, Druck pressure sensor)
 - enable research, perform highly specialized task
 - **Commercial Products:** (small to large volume)
 - highly dependent on application/market
 - pressure sensors: MAP versus catheter tip.

Technology Driven versus Market Driven?
High-Level Issues

- High-Level Design Issues:
 - **Market:**
 - need, size, time-scale, etc.?
 - **Impact:**
 - enabling, paradigm shift, etc.?
 - **Competition:**
 - competing technologies/organizations?
 - **Technology:**
 - manufacturing requirements, maturity level?
 - **Manufacturing Economics:**
 - cost versus volume.

Relative importance is a function of the type of microsystem!
Detailed Issues

- Detailed Modeling and Design Issues:
 - **System Architecture:**
 - micromachined components, electronics, package, etc.
 - **System Partitioning:**
 - monolithic/hybrid, effects on packaging
 - **Transduction Methods:**
 - effects on cost, performance, and partitioning
 - **Fabrication Technologies:**
 - effects on partitioning
 - robustness/yield issues: repeatability (geometry/materials)
 - **Domain-Specific Knowledge** (all MEMS are multi-energy domain!)
 - **Electronics:**
 - interface, signal conditioning, control, etc.
MEMS Modeling Levels

- **System Level**: block diagrams, lumped elements (ODEs), etc.
- **Device Level**: Energy-based macro-models (ROM).
- **Physical Level**: PDEs, FEM, CFD, etc.
- **Process Level**: Fabrication process modeling (TCAD), masks, etc.

Example

- Capacitive Accelerometer: “multi-energy domain problem”

- **Kinetic Energy**: proof mass motion/inertial domain
- **Potential Energy**: bending strain energy/elastic domain
- **Potential Energy**: electrostatic forces/electrical domain
- **Dissipation**: viscous dissipation/fluid domain
- **Potential Energy**: gas compression/fluid domain
Capacitive Accelerometer continued:

- Complex dynamics problem: (haven’t even considered circuitry yet!)
 - coupled
 - non-linear
 - distributed
 Need efficient, compact, insightful models

Physical Phenomena

Distributed, Non-linear, Coupled PDEs

Lumped Elements ODEs

- Laws
- Continuum?

- Energy-based models for ROM
Macromodels

- Ideal Macromodel:
 - Analytic
 - Accurately captures energy behavior
 - Quasi-static/dynamic
 - Proper dependence on geometry & material properties
 - Agreement with 3-D numerical modeling/experiments on test structures

"oversimplification, but provides physical insight"
Question:

Given the fundamental equations governing the physical phenomena, how do we generate lumped-element models?

- Define ideal elements (single-port elements)
- Define connection laws/KCL/KVL for equivalent circuits
- Develop multiple energy-domain transducers (two-port elements)
Conjugate Power Variables

- **Generation of Lumped Elements:**
 - Now that we know the basic assumption, we will consider the energy exchange between “elements”

\[
P_{BA} \quad \text{and} \quad P_{AB}
\]

- \(P_{AB} \) : Power Flow \(A \rightarrow B \)
- \(P_{BA} \) : Power Flow \(B \rightarrow A \)
Conjugate Power Variables

- **Power Flow:**

\[P = \frac{dE}{dT} \]; where \(E \) is energy. Both \(P_{AB} \) and \(P_{BA} > 0 \), so let

\[P_{AB} = u^2 \quad \text{and} \quad P_{BA} = v^2, \]

where both \(u \) and \(v \) are real.

The net power flow from \(A \to B \) is

\[P_{net} = P_{AB} - P_{BA} = u^2 - v^2 = (u + v)(u - v), \]

so define

\[
\begin{align*}
e & \equiv u + v, \quad \text{EFFORT} \\
 f & \equiv u - v, \quad \text{FLOW}
\end{align*}
\]
Conjugate Power Variables

- **Displacement and Momentum:**

 Associated with the EFFORT variable, there is a generalized momentum, \(p \), where

 \[
 p \equiv \int_{t_0}^{t} e(t)dt + p(t_0).
 \]

 Associated with the FLOW variable, there is a generalized displacement, \(q \), where

 \[
 q \equiv \int_{t_0}^{t} f(t)dt + q(t_0).
 \]
Conjugate Power Variables

Summary:

Power in an element is defined as $P = e \cdot f$.

The energy in an element is defined as $E = q \cdot e$ or $E = p \cdot f$.

For an IMPEDANCE ANALOGY, $e = Z \cdot f$, where Z is the generalized impedance of the element.

For an ADMITTANCE ANALOGY, $f = Y \cdot e$, where Y is the generalized admittance of the element.
Examples of Conjugate Power Variables

<table>
<thead>
<tr>
<th>Energy Domain</th>
<th>Effort</th>
<th>Flow</th>
<th>Momentum</th>
<th>Displacement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical translation</td>
<td>Force F</td>
<td>Velocity \dot{x}, v</td>
<td>Momentum p</td>
<td>Position x</td>
</tr>
<tr>
<td>Fixed-axis rotation</td>
<td>Torque τ</td>
<td>Angular velocity ω</td>
<td>Angular momentum J</td>
<td>Angle θ</td>
</tr>
<tr>
<td>Electric circuits</td>
<td>Voltage V, v</td>
<td>Current I, i</td>
<td>...</td>
<td>Charge Q</td>
</tr>
<tr>
<td>Magnetic circuits</td>
<td>MMF \mathcal{M}</td>
<td>Flux rate $\dot{\phi}$</td>
<td>...</td>
<td>Flux ϕ</td>
</tr>
<tr>
<td>Incompressible fluid flow</td>
<td>Pressure P</td>
<td>Volumetric flow Q</td>
<td>Pressure momentum Γ</td>
<td>Volume V</td>
</tr>
<tr>
<td>Thermal</td>
<td>Temperature T</td>
<td>Entropy flow rate \dot{S}</td>
<td>...</td>
<td>Entropy S</td>
</tr>
</tbody>
</table>

Lumped-Element Modeling

- **Representation:**
 - **Bond Graphs:**
 - high-level, specialized language
 - difficult to learn, but very flexible (i.e., easily handles non-linearities)

 - **Equivalent Circuit Elements:**
 - represent elements and interconnects as equivalent circuits
 - Kirchoff’s laws govern behavior
 - easy to learn, but limited to linear passive elements
Single-Port Elements

- **Ideal One-Port Elements:**
 - There are 5 one-port elements
 - directly analogous to electrical elements
 - 2 sources (active)
 - 1 dissipation (passive)
 - 2 energy storage (passive)

- **Sign convention:**
 - We will use the impedance analogy \(e = Z \cdot f \)
 - **effort** is the across variable
 - **flow** is the through variable
 - **power** is entering the element
Source Elements

- **Ideal Flow Source:**
 - Provides a flow equal to $f_0(t)$ for any value of e

- **Ideal Effort Source:**
 - Provides an effort equal to $e_0(t)$ for any value of f
Generalized Dissipator

Ideal Dissipator: “R”

Defined directly in terms of e and f, $e = e(f)$ or $f = f(e)$ in order to be considered passive, $e = e(f)$ must go through the origin and occupy the first and third quadrants, so that $P = e \cdot f > 0$.

![Diagram](image)
Generalized Dissipator

- **Ideal Dissipator:** “R”
 - Physically represents energy lost by “friction”.
 - No energy storage!

Examples, "$e = Rf$"

- **EQS:** $V = RI$, "Ohm's Law", linear resistor
- **Fluids:** $\Delta p = RQ$, pressure-drop for laminar duct flow (linear)
- **Mechanics:** $F = bu$, linear dash-pot
- **Mechanics:** Columb friction