Structures

- Agenda:
 - Beams
 - Bending
 - Examples

- Reading: Senturia, Ch. 9, pp.211-219.
Last lecture

- Axial loading
 - Spring constant \(k_{axial} = \frac{EWH}{L} \)

- Bending
 - Reaction force \(F_R = F \)
 - Reaction moment \(M_R = FL \)
 - Shear force \(V = F \)
 - Internal bending moment \(M(x) = -F(L - x) \)
 - For distributed loading
 - \(q = -\frac{dV}{dx} \)
 - \(V = \frac{dW}{dx} \)
Bending of Beams

- **Stress in a beam with pure bending:**
 - Assume small deflections, i.e., “no strain in neutral axis”

![Diagram showing bending of beam, tension, neutral axis, and compression](image)

Ref. Senturia, pg 211.

The length of the differential element, \(dL = (\rho - z)d\theta \) where, \(\rho = \) the radius of curvature. At the neutral axis \((z = 0) \), \(dx = \rho d\theta \), therefore, \(dL = dx - \frac{z}{\rho} \) dx.

So the corresponding stresses and strains can be expressed as

\[
\varepsilon_x = -\frac{z}{\rho} \quad \text{and} \quad \sigma_x = -\frac{zE}{\rho}
\]
Bending of Beams

Axial strain: \[\varepsilon_x = -\frac{z}{\rho} \]

Axial stress: \[\sigma_x = -\frac{zE}{\rho} \]

\[
M = -\int_{-H/2}^{H/2} z \sigma_x W dz = -\int_{-H/2}^{H/2} \frac{z^2 E}{\rho} W dz = -\left(\frac{1}{12} WH^3\right) \frac{E}{\rho}
\]

Therefore, \[\frac{1}{\rho} = -\frac{M}{EI} \]

\(\rho \): curvature of radius
\(M \): bending moment
\(I \): Moment of inertia of the cross-section
Bending of Beams

Centroid
Center of gravity
First moment of an area: \(M = Ad \), \(A \) is the area, and \(d \) is the distance from the centroid of the area to the reference axis.
- Choose a reference axis
- Calculate the moment of each part
- Find the centroidal axis

\[
\sum A_i d_i = \left(\sum A_i \right) x
\]

Bending Moment of Inertia:

\[
I = \int_A y^2 \, dA \quad [m^4]
\]

Example

\[
I_z = wh^3 / 12 \quad I_z = \pi r^4 / 4
\]
DE for Beam Bending

- **Approximation for radius of curvature:**

![Diagram of beam bending with labels: x, dx, w(x), ds, θ(x)]

An increment of beam length dx is related to ds via

$$\cos(\theta) = \frac{dx}{ds}, \text{ for small } \theta \to dx \approx ds.$$

The slope of the beam at any point is given by

$$\frac{dw}{dx} = \tan(\theta), \text{ for small } \theta \to \theta \approx \frac{dw}{dx}.$$

For a given radius of curvature, ds is related to $d\theta$ via

$$ds = \rho d\theta, \text{ so for small } \theta \to \frac{d\theta}{dx} \approx \frac{1}{\rho} \approx \frac{d^2w}{dx^2}.$$
DE for Beam Bending

- **Basic Differential Equations for Beam Bending:**

 \[\frac{d^2 w}{dx^2} = \frac{1}{\rho}. \]

 Now that we have a relationship between \(w(x) \) and \(\rho \), we can express the moment and shear forces as a function of \(w(x) \),

 Moments:
 \[\frac{d^2 w}{dx^2} = -\frac{M}{EI}, \]

 now recall \(V = \frac{dM}{dx} \)

 Shear:
 \[\frac{d^3 w}{dx^3} = -\frac{V}{EI}, \]

 now recall \(-q = \frac{dV}{dx} \)

 Uniform Load:
 \[\frac{d^4 w}{dx^4} = \frac{q}{EI}, \]
Cantilever Beam

- **Cantilever Beam with Point Load:**

Recall from last lecture, we found that

\[M(x) = -F(L-x), \]

so the governing DE is

\[\frac{d^2w}{dx^2} = -\frac{M}{EI} = \frac{F}{EI} (L-x), \]

which is 2nd order ODE.

Integrating the above equation twice, we have

\[w(x) = A + Bx + \frac{FL}{2EI} x^2 - \frac{F}{6EI} x^3 \]

Using the boundary conditions, we obtain the beam deflection equation:

\[w(x) = \frac{FLx^2}{2EI} \left(1 - \frac{x}{3L} \right) \]

Boundary conditions:

\[w(0) = 0 \quad \frac{dw}{dx} \bigg|_{x=0} = 0 \]

Maximum deflection:

\[w(x) = \frac{FL^3}{3EI} \]

Spring constant:

\[k = \frac{3EI}{L^3} = \frac{EWH^3}{4L^3} \]
Cantilever Beam

Maximum Stress:

Recall from last lecture, we found that \(\varepsilon_x = -\frac{z}{\rho} \) and \(\sigma_x = -\frac{zE}{\rho} \),

but \(\frac{1}{\rho} = \frac{d^2w}{dx^2} = \frac{F}{EI} (L - x) \).

\[\sigma_x = -\frac{zEF}{EI} (L - x) \], the maximum magnitude occurs at \(z = \left\lfloor \frac{H}{2} \right\rfloor \) (the top and bottom surface) and \(x = 0 \rightarrow \left\| \sigma_{\text{max}} \right\| = \frac{HLF}{2I} = \frac{6LF}{WH^2} \).

Clearly, there were be a maximum load that this cantilever can withstand without breaking.
Cantilever Beam

- Linear beam theory limit

- Small deflection approximation is good for $y < 0.3L$
Anticlastic Curvature

- Transverse Strain via Poisson effect:

Recall, $\varepsilon_x = -\frac{z}{\rho}$, therefore, $\varepsilon_y = -\nu \varepsilon_x = \frac{\nu z}{\rho}$

Usually, this effect is too small to see for slender beams because ρ tend to be very large with respect to the W or H.

Simple Beam Equations

Ref. CMU 18-819 course notes (G. Fedder)